Beam-Plasma Interactions in the Marshall Magnetic Mirror

Todd Schneider, Jason Vaughn,
M.R. Carruth Jr., David Edwards
Marshall Space Flight Center
Huntsville, AL 35812

Outline of Presentation

Plasma Propuslion

- Motivation
- Existing Devices

Marshall Magnetic Mirror

- Magnetic Mirrors
- Description of M3 Device

Beam-Plasma Experiment

- Experiment Description
- Plasma Parameters
- Diagnostics
- Initial Data
- Future Experiments and Collaborations

Plasma Propulsion

- High temperature and density gas (plasma) is ejected at high velocity from a containment device thereby creating thrust.
 - Require density > 10¹⁷ m⁻³; Require temperature > 100 eV
- Magnetic fields are used to contain the plasma and ultimately to form a magnetic nozzle.
- Cylindrical magnetic field geometries are a natural choice for propulsion.
- Plasma propulsion is expected to yield high Specific Impulse (Isp).
 - Isp scales with temperature of propellant
- Demonstration Device is being built within NASA
 - VASMIR device at JSC is almost at demonstration phase
 - On-orbit requirements have been plotted

Magnetic Mirrors

Magnetic mirrors are common to most plasma propulsion designs.

Drawing from Lawrence Livermore National Lab Fusion Education Web Site (http://education.llnl.gov/lasers/fusion/blue15.html)

Marshall Magnetic Mirror Layout

Marshall Magnetic Mirror

Plot of Magnetic Field Strength in the M3 Device

• Magnetic field strength as a function of position (Lengthwise)

Scan Through Length

100 Amps Through Coils (Resistance = 0.44 ohms)

B-field:

Max. = 989 Gauss

Min. = 655 Gauss

Ratio = 1.5

Plot of Magnetic Field Strength in the M3 Device

• Magnetic field strength as a function of position (Radial)

Scan Through Diameter

100 Amps Through Coils (Resistance = 0.44 ohms)

B-field:

Max. = 657 Gauss

M3 Description and Support Equipment

Magnet Coils

- Each magnet is composed of 9 individual coils
- Total number of turns (series) is: 33 turns per coil x 9 Coils x 2 Sets = 594 turns
- Cylindrical Vacuum Chamber

Magnet Power Supply System

- Three (3) DC power supplies; 310 amps, 32 volts series operation
- Maximum Magnetic Field on axis is: 1,000 Gauss

Microwave Power Supply System

2 kW CW source, 2.45 GHz

Electron Beam System

- Hollow Cathode System (EPL Model HCPEE 500)
- 50 amps continuous rating; 100 amps for 30 secs
- Capacitor Bank supply will allow 400-500 amps for 200 milliseconds

Gas Feed System

- Use Argon, Xenon, and Hydrogen gas
- Mass flow controller: 0.5 sccm to 10 sccm

Beam-Plasma Experiment

- Conduct an experimental study of the interaction of an electron beam with a plasma.
- Determine feasibility of using an electron beam to increase plasma density and temperature for future plasma propulsion devices
- Initial plasma density limited by cut-off density
 - For 2.45 GHz, Cut-off density = 1×10^{11} cm⁻³
- Optimize the power coupling between the electron beam and plasma by varying several parameters.
 - Neutral gas type and density
 - Magnetic field strength and configuration (trim coils)
 - Microwave power input to plasma
 - Beam energy and current
- Compare results with theory and modeling.
 - Plasma wave excitation/instabilities
 - Use beam-plasma computer codes (existing)

Diagnostics

Langmuir Probes

- Scan inside magnetic mirror and downstream
- Look at relative changes in electron temperature and plasma density with and without beam injection

Mach Probes

Measure exit velocities outside of mirror

Pearson Coils

Determine electron beam pulse parameters

Microwave Interferometer(s)

- Measure plasma density with and without e-beam injection
- Two interferometers existing:
 - 10 GHz (X-band) Interferometer
 - 60 GHz (V-band) Interferometer

Data Acquisition

- Digital Oscilloscopes (8 channels) 400 MHz
- PXI Modular DAQ System with embedded controller
 - 4 oscilloscope channels (100 MHz)
 - Directly integrated into Labview System/PC

Future Work

- Increase electron beam current by utilizing existing capacitor bank power supply
- Utilize new 2000 amp power supply to operate at higher magnetic fields (perhaps 2 kgauss).
- Have partnered with Oak Ridge National Lab to increase diagnostic capabilities (improvements to microwave interferometers).
- Will be testing Submicron Retarding Field Energy Analyzer (also in partnership with Oak Ridge).
- Investigate the use of a helicon plasma source to achieve high initial plasma density